

Fronius Symo 10 - 20 kW
Explanation of symbols and choice of location
Notes regarding installation and connection

Operating Instructions

Grid-connected inverter

Contents

Explanation of symbols	3
Explanation of safety symbols	3
Explanation of symbols - choice of location	3
Explanation of symbols - installation position	4
Choice of location	7
Proper use	7
General comments regarding choice of location	7
Installation notes	8
Selecting dowels and screws	8
Recommended screws	8
Fitting the wall bracket	8
Installing the inverter on a mast	8
Notes regarding grid connection	9
Monitoring the Grid	9
AC terminals	9
Type of AC cable	9
Connecting aluminum cables	9
Cross-section of the AC cable	10
Connecting the inverter to the public grid (AC)	10
Maximum fuse rating on alternating current side	11
Notes regarding DC connection	12
General comments regarding solar modules	12
DC terminals	12
Connecting aluminum cables	13
Inverter DČ connection	13
Notes regarding inverters with multiple MPP trackers	15
Inverter with multiple MPP trackers	15
Notes regarding the laying of data communication cables	16
Laying data communication cables	16
Notes regarding attaching the inverter to the wall bracket	17
Attaching the inverter to the wall bracket	17
Notes regarding starting up for the first time	18
Notes regarding starting up for the first time	18
Notes regarding software updates	19
Notes regarding software updates	19
USB Stick as a Data Logger and for Updating Inverter Software	20
USB stick as a data logger	20
Data on the USB stick	20
Data volume and storage capacity	21
Buffer memory	21
Suitable USB sticks	22
USB stick for updating the inverter software	22
Remove USB stick	23
Notes regarding maintenance	24
Maintenance	24
Cleaning	24

Explanation of symbols

Explanation of safety symbols

DANGER! indicates immediate and real danger. If it is not avoided, death or serious injury will result.

WARNING! indicates a potentially dangerous situation. Death or serious injury may result if appropriate precautions are not taken.

CAUTION! indicates a situation where damage or injury could occur. If it is not avoided, minor injury and/or damage to property may result.

NOTE! indicates a risk of flawed results and possible damage to the equipment.

IMPORTANT! indicates tips for correct operation and other particularly useful information. It does not indicate a potentially damaging or dangerous situation.

If you see any of the symbols depicted in the "Safety rules", special care is required.

Explanation of symbols - choice of location

The inverter is suitable for installation indoors.

The inverter is suitable for installation outdoors.

Its IP 55 degree of protection means that the inverter is resistant to water jets from any direction and can also be used in damp environments.

In order to minimise the heating up of the inverter, do not expose it to direct insolation. The inverter should ideally be mounted in a protected position, e.g. in the vicinity of the solar modules or beneath the eaves.

U_{DCmax} at an altitude of: 0 to 2000 m = 1000 V 2001 to 2500 m = 950 V 2501 to 3000 m = 900 V 3001 to 3400 m = 850 V

IMPORTANT! The inverter must not be installed or used at altitudes above 3400 m.

Do not install the inverter:

 in areas where ammonia, corrosive vapours, acids or salts are present
 (e.g. fertiliser stores, ventilation openings from cattle sheds, ch

(e.g. fertiliser stores, ventilation openings from cattle sheds, chemical plants, tanneries, etc.)

As the inverter generates low levels of noise at certain times, it should not be installed close to living areas.

Do not install the inverter:

- in places where there is an increased risk of damage from farm animals (horses, cattle, sheep, pigs, etc.)
- in stables or adjoining areas
- in storage areas for hay, straw, chaff, animal feed, fertilisers, etc.

Do not install the inverter:

- in places and environments subject to heavy build-up of dust
- in places and environments in which a heavy build-up of dust containing conductive particles (e.g. iron chips) is likely

Do not install the inverter:

- in greenhouses
- in storage or processing areas for fruit, vegetables or winegrowing products
- in places used to prepare grain, green fodder or animal feeds

Explanation of symbols - installation position

la

The inverter is designed to be installed vertically on a vertical wall or pillar.

The inverter is suitable for horizontal installation.

The inverter is suitable for installation on a sloping surface.

Do not install the inverter on a sloping surface with its connection sockets facing upwards.

Do not install the inverter at an angle on a vertical wall or pillar.

Do not install the inverter horizontally on a vertical wall or pillar.

Do not install the inverter on a vertical wall or pillar with its connection sockets facing upwards.

Do not install the inverter such that it overhangs with its connection sockets facing upwards.

Do not install the inverter such that it overhangs with its connection sockets facing downwards.

Do not install the inverter on the ceiling.

Choice of location

Proper use

The solar inverter is intended exclusively to convert direct current from solar modules into alternating current and to feed this into the public grid.

Utilisation not in accordance with the intended purpose comprises:

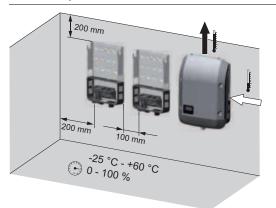
- utilisation for any other purpose or in any other manner
- making any modifications to the inverter that have not been expressly approved by Fronius
- the installation of parts that are not distributed or expressly approved by Fronius.

Fronius shall not be liable for any damage resulting from such action. No warranty claims will be entertained.

Proper use includes:

- carefully reading and obeying all the instructions and all the safety and danger notices in the operating instructions
- performing all stipulated inspection and maintenance work
- installation as specified in the operating instructions

When designing the photovoltaic system, ensure that all of its components are operated within their permitted operating ranges at all times.


Observe all the measures recommended by the solar module manufacturer to ensure the lasting maintenance of the properties of the solar module.

Obey the regulations of the energy supply company regarding feeding energy into the grid.

General comments regarding choice of location

The following criteria should be taken into account when choosing a location for the inverter:

Install only on a solid surface

Max. ambient temperatures:

-25°C / +60°C

Relative humidity:

0 - 100%

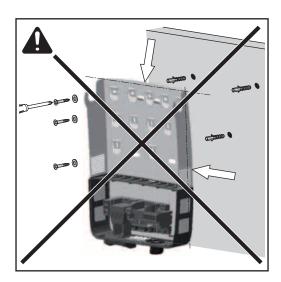
The airflow within the inverter is from the right to the top (cold air taken in from the right, hot air dissipated out of the top).

If the inverter is installed in a switch cabinet or a similar sealed area, then forced-air ventilation must be provided to ensure adequate heat dissipation.

If the inverter is to be installed on the outer wall of a cattle shed, maintain a minimum allround clearance of 2 m between the inverter and all ventilation and other openings in the building.

The installation location must not be exposed to ammonia, corrosive vapours, salts or acids.

Installation notes


Selecting dowels and screws

IMPORTANT! Depending on the surface, different dowels and screws may be required for installing the wall bracket. Therefore, these dowels and screws are not part of the scope of supply for the inverter. The system installer is responsible for selecting the proper dowels and screws.

Recommended screws

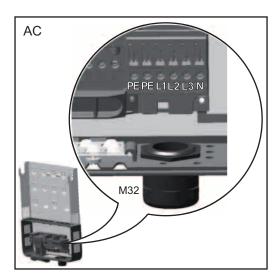
To install the inverter, the manufacturer recommends the use of steel or aluminium screws with a diameter of 6 - 8 mm.

Fitting the wall bracket

NOTE! When fitting the wall bracket to the wall or a pillar, ensure that the wall bracket does not become warped or deformed.

Installing the inverter on a mast

When installing the inverter on a mast or support, Fronius recommends the "Pole clamp" mast fixing set from Rittal GmbH (order no. SZ 2584.000).


This set enables the inverter to be installed on round or rectangular masts with the following diameters: \varnothing between 40 and 190 mm, \square between 50 and 150 mm

Notes regarding grid connection

Monitoring the Grid

IMPORTANT! The resistance in the leads to the AC-side connection terminals must be as low as possible for optimal functioning of grid monitoring.

AC terminals

PE Ground conductor / grounding

L1-L3 Phase conductor

N Neutral conductor

Max. cross-section of each conductor cable:


16 mm²

Min. cross-section of each conductor cable: in accordance with the fuse rating on the AC side, but at least 2.5 mm²

The AC cables can be connected to the AC terminals without ferrules.

Type of AC cable

The following types of AC cable can be connected to the AC terminals of the inverter:

- copper or aluminium: round, single wire
- Copper: round, finely stranded up to conductor category 4

Connecting aluminum cables

The AC-side terminals are designed for connecting single-wire, round, aluminum cables. The following points must be taken into account when connecting aluminum cables due to the non-conducting oxide layer of aluminum:

- Reduced rated currents for aluminum cables
- The connection requirements listed below

NOTE! Take into account local specifications when configuring cable cross sections.

Connection Requirements:

Carefully clean off the oxide layer of the stripped end of the cable, e.g., using a knife.

IMPORTANTDo not use brushes, files or sandpaper. Aluminum particles may get stuck and can transfer to other cables.

- After removing the oxide layer of the cable end, rub in a neutral grease, e.g., acid- and alkali-free Vaseline.
- Then immediately connect it to the terminal.

Repeat the steps above whenever the cable is disconnected and then reconnected.

Cross-section of the AC cable

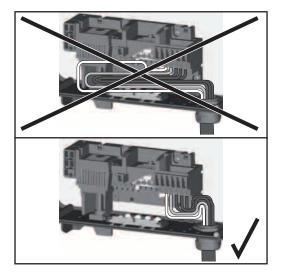
When using an M32 metric screw joint (reducer removed): cable diameter 11 - 21 mm

(with a cable diameter of 11 mm the strain-relief force is reduced from 100 N to a maximum of 80 N)

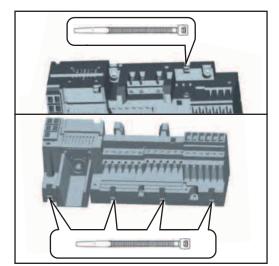
With cable diameters greater than 21 mm, the M32 screw joint must be replaced by an M32 screw joint with a larger clamping area - item number: 42,0407,0780 - strain-relief device M32x15 KB 18-25.

Connecting the inverter to the public grid (AC)

NOTE! Form loops with the AC cables when connecting them to the AC terminals.

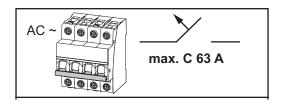

When securing the AC cables using a metric screw joint, ensure that the loops do not protrude beyond the connection area. Under certain circumstances it may otherwise no longer be possible to close the inverter.

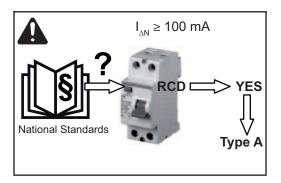
NOTE!


- Ensure that the grid neutral conductor is grounded. In the case of IT networks (insulated networks with no grounding) this may not be the case; it will then not be possible to use the inverter.
- In order to use the inverter, the neutral conductor must be connected.
 A neutral conductor that is too small may adversely affect the ability of the inverter to feed energy into the grid. The neutral conductor must therefore be the same size as the other live conductors.

IMPORTANT! The PE ground conductor of the AC cable must be laid in such a way that it is the last to be disconnected in the event that the strain-relief device should fail. This can be ensured, for example, by making it somewhat longer and by laying it in a loop.

If AC cables are laid over the shaft of the DC main switch or across the connection block of the DC main switch, they may be damaged when the inverter is swung in, or they may even prevent the inverter from being swung in.


IMPORTANT! Do not lay AC cables over the shaft of the DC main switch or across the connection block of the DC main switch!


If overlength AC or DC cables are to be laid in loops in the connection area, attach the cables with cable ties to the eyelets provided on the top and bottom of the connection block.

Example: AC cable

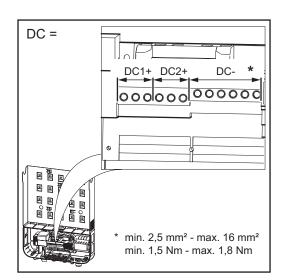
Maximum fuse rating on alternating current side

Inverter	Phases	AC power	Maximum fuse rating	Recommended fuse rating
Fronius Symo 10.0-3-M	3	10000 W	1 x C 63 A	1 x C 25 A
Fronius Symo 12.5-3-M	3	12500 W	1 x C 63 A	1 x C 32 A
Fronius Symo 15.0-3-M	3	15000 W	1 x C 63 A	1 x C 32 A
Fronius Symo 17.5-3-M	3	17500 W	1 x C 63 A	1 x C 40 A
Fronius Symo 20.0-3-M	3	20000 W	1 x C 63 A	1 x C 50 A

NOTE! Local regulations, the energy supply company or other factors may require an earth-leakage circuit breaker in the grid line. For this situation, a type A earth-leakage circuit breaker with a tripping current of at least 100 mA is generally adequate. In particular cases, and depending on local factors, however, the type A earth-leakage circuit breaker may trip at the wrong time. For this reason, Fronius recommends that an earth-leakage circuit breaker that is suitable for frequency converters should be used.

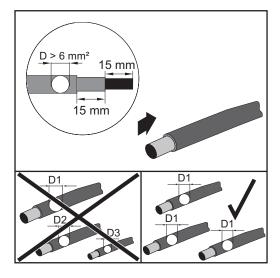
Notes regarding DC connection

General comments regarding solar modules


To enable suitable solar modules to be chosen and to use the inverter as efficiently as possible, it is important to bear the following points in mind:

- If insolation is constant and the temperature is falling, the open circuit voltage of the solar modules will increase. The open circuit voltage must not exceed 1000 V. If the open circuit voltage exceeds the specified values, the inverter will be destroyed and no warranty claims will be entertained.
- The temperature coefficients on the solar modules data sheet must be observed
- More exact values for dimensioning the solar modules can be provided by suitable calculation programs, like the Fronius Solar.configurator (which can be downloaded from www.fronius.com).

NOTE! Before you connect up the solar modules you should check that the voltage specified by the manufacturer corresponds to the actual measured voltage.


DC terminals

Max. cross-section of each DC cable: 16 mm²

Min. cross-section of each DC cable: 2.5 mm²

The DC cables can be connected to the DC terminals without ferrules.

For double insulated DC connection leads with a cable diameter greater than 6 mm², 15 mm of the outer jacket must be removed in order to connect the cable to the DC terminal.

NOTE! To ensure effective strain relief of the solar module strings, only use cables with identical cross-sections.

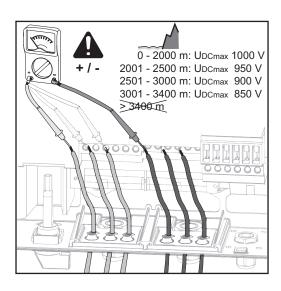
Connecting aluminum cables

The DC-side terminals are designed for connecting single-wire, round aluminum cables. The following points must be taken into account when connecting aluminum cables due to the non-conducting oxide layer of aluminum:

- Reduced rated currents for aluminum cables
- The connection requirements listed below

NOTE! Take into account local specifications when configuring cable cross sections.

Connection Requirements:

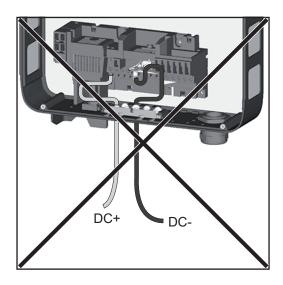

Carefully clean off the oxide layer of the stripped end of the cable, e.g., using a knife.

IMPORTANT Do not use brushes, files or sandpaper. Aluminum particles may get stuck and can transfer to other cables.

- After removing the oxide layer of the cable end, rub in a neutral grease, e.g., acid- and alkali-free Vaseline.
- Then immediately connect it to the terminal.

Repeat the steps above whenever the cable is disconnected and then reconnected.

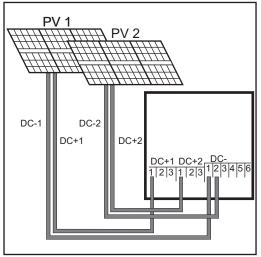
Inverter DC connection


CAUTION! Risk of possible damage to the inverter! Check the polarity and voltage of the solar module strings before making the connection. The voltage must not exceed the following values:

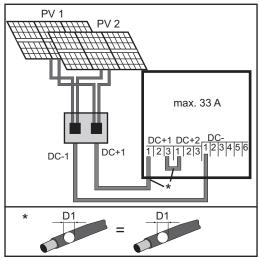
- when installed between 0 and 2000 m above sea level: 1000 V
- when installed between 2001 and 2500 m above sea level: 950 V
- when installed between 2501 and 3000 m above sea level: 900 V
- when installed between 3001 and 3400 m above sea level: 850 V

NOTE! Only break out as many target break points as the number of cables that are provided (e.g. if there are 2 DC cables, then break out 2 recesses).

The difference between the individual solar module strings must not exceed 10 V.



If DC cables are laid over the shaft of the DC main switch or across the connection block of the DC main switch, they may be damaged when the inverter is swung in, or they may even prevent the inverter from being swung in.


IMPORTANT! Do not lay DC cables over the shaft of the DC main switch or across the connection block of the DC main switch!

Notes regarding inverters with multiple MPP trackers

Inverter with multiple MPP trackers

Connecting two solar module fields to an inverter with multiple MPP trackers

Connecting multiple interconnected solar module fields to an inverter with multiple MPP trackers using one lead

In the case of inverters with multiple MPP trackers, there are 2 independent DC inputs (MPP trackers) available. These can be connected to an unequal number of solar modules.

There are 3 terminals for DC+ available per MPP tracker. In total there are 6 terminals for DC-.

Connecting 2-6 strings in multiple MPP tracker mode:

divide the strings between the two MPP tracker inputs (DC+1/DC+2). The DC- terminals can be used however you wish, as they are internally connected.

When starting up for the first time, set MPP TRACKER 2 to "ON" (this will also later be possible from the Basic menu)

Single MPP tracker mode on an inverter with multiple MPP trackers:

If the strings are connected using a string collection box and only one bus is used for connection to the inverter, the connection DC+1 (pin 2) and DC+2 (pin 1) must be jumpered.

The wire diameter of the DC connection lead and the jumpering must be the same. Jumpering of the DC terminal is not necessary, as these terminals are jumpered internally.

When starting up for the first time, set MPP TRACKER 2 to "OFF" (this will also later be possible from the Basic menu)

If the inverter with multiple MPP trackers is operated in single MPP tracker mode, the currents from the DC leads connected are divided evenly across both inputs.

Notes regarding the laying of data communication cables

Laying data communication cables

IMPORTANT! Operating the inverter with an option card and 2 broken-out option card divisions is not permitted.

To cater for this eventuality, a relevant blanking cover (42,0405,2020) is available from Fronius as an option.

IMPORTANT! Note the following if data communication cables are being introduced into the inverter:

- depending on the number and cross-section of the data communication cables that are being introduced, take the relevant blanking plugs out of the sealing insert and insert the data communication cable.
- insert without fail the relevant blanking plugs into the free openings on the sealing insert.

Notes regarding attaching the inverter to the wall bracket

Attaching the inverter to the wall bracket

Two people are required to attach the inverter to the wall bracket, as it is extremely heavy.

NOTE! For safety reasons, the inverter is fitted with a latch that prevents the inverter from being swung into the wall bracket unless the DC main switch is switched off.

- Never attach the inverter to the wall bracket or swing it in unless the DC main switch is switched off,
- Never use force to attach the inverter or swing it in.

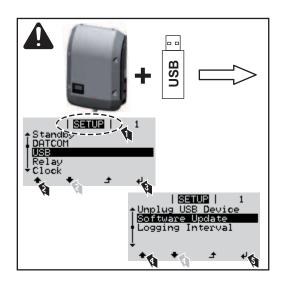
The fastening screws in the data communication area of the inverter are used for securing the inverter to the wall bracket. Correctly tightened fastening screws are a prerequisite if proper contact is to be established between inverter and wall bracket.

CAUTION! If the fastening screws are not tightened correctly, then the inverter is at risk of being damaged.

Fastening screws that are not correctly tightened can result in arcs occurring when the inverter is in operation, which in turn can cause fires. Always use the specified torque when tightening the fastening screws.

Notes regarding starting up for the first time

Notes regarding starting up for the first time


When starting up the inverter for the first time, it is necessary to select various setup settings.

If setup is interrupted before it is complete, it can be restarted by means of an AC reset. An AC reset is performed by switching the automatic circuit breaker off and then on again.

The country setup can only be set when starting up the inverter for the first time. If it becomes necessary to modify the country setup at a later date, please contact your Technical Support team.

Notes regarding software updates

Notes regarding software updates

If the inverter is supplied with a USB stick, the inverter software must be updated as soon as the inverter has been commissioned:

- Plug the USB stick into the data communication area of the inverter
- 2 Open the Setup menu
- 3 Select the "USB" menu item
- Select "Update Software"
- 5 Update the software

USB Stick as a Data Logger and for Updating Inverter Software

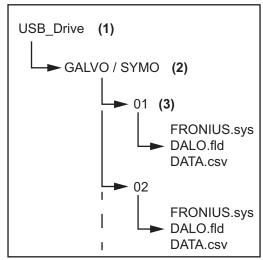
USB stick as a data logger

A USB stick connected to the USB A socket can act as a data logger for an inverter.

Logging data saved to the USB stick can at any time

- be imported into the Fronius Solar.access software via the included FLD file,
- be viewed directly in third-party applications (e.g., Microsoft® Excel) via the included CSV file.

Older Excel versions (up to Excel 2007) have a row limit of 65536.

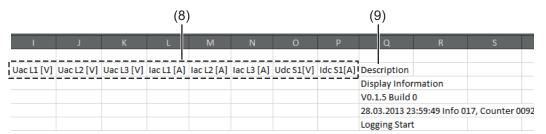

Data on the USB stick

If the USB stick is being used as a data logger, three files will be created automatically:

- FRONIUS.sys system file:
 This file stores information from the inverter that is irrelevant to the customer. The file must not be deleted separately; only ever delete all of the files (sys, fld, csv) in one go.
- DALO.fld log file:
 A log file for reading the data in the Fronius Solar.access software.

Further details on the Fronius Solar.access software can be found in the "DATCOM Details" operating instructions at http://www.fronius.com

DATA.csv log file:
 A log file for reading the data in a spreadsheet program (e.g. Microsoft® Excel)


Data structure on the USB stick

- (1) USB root directory
- (2) Fronius inverter (Fronius Galvo or Fronius Symo)
- (3) Inverter number can be set in the Setup menu under DATCOM

If there are several inverters with the same inverter number, the three files will be saved in the same folder. A digit is added to the file name as a suffix (e.g.: DALO_02.fld)

Structure of the CSV file:

(3)(1)(2)(4)(5)(6)SerialNr.:123456789987456:21' Inverter No. Device Type | Periode [s] | Energy [Ws] | Energy L[Var] | Energy C[Var] Time 30.03.2013 17:15:19 1 247 30.03.2013 17:15:19 1 247 30.03.2013 17:15:19 1 247 30.03.2013 17:15:20 1 247

- (1) ID
- (2) Inverter no.
- (3) Inverter type (DATCOM code)
- (4) Logging interval in seconds
- (5) Energy in watts per second, relative to the logging interval
- (6) Inductive reactive power
- (7) Capacitive reactive power
- (8) Average values during the logging interval (AC voltage, AC current, DC voltage, DC current)
- (9) Additional information

Data volume and storage capacity

A USB stick with a storage capacity of 1 GB can record logging data for roughly seven years at a logging interval of five minutes.

CSV file

CSV files can only store 65,535 lines (data records) (up to Microsoft® Excel 2007; there is no restriction from this version onwards).

At a five-minute logging interval, the 65,535 lines will be written within approximately seven months (CSV data size of approx. 8 MB).

In order to avoid data loss, the CSV file should be backed up to a PC and deleted from the USB stick within this seven-month period. If the logging interval is set to a longer period, this time frame will be increased accordingly.

FLD file

The FLD file should not be larger than 16 MB. This will provide enough storage capacity for approximately six years at a logging interval of five minutes.

If the file exceeds the 16 MB limit, it should be backed up to a PC and all of the data on the USB stick should be deleted.

After backing up and removing the data, the USB stick can be reconnected immediately to resume recording the logging data without any further steps being required.

NOTE! Using a full USB stick can lead to data loss or data being overwritten. When using USB sticks, always ensure that there is sufficient storage capacity on the stick.

Buffer memory

If the USB stick is unplugged (e.g. for data backup purposes), the logging data is written to a buffer memory in the inverter.

As soon as the USB stick is plugged in again, the data is copied automatically from the buffer memory to the stick.

The buffer memory can store a maximum of six logging points. Data is only logged while the inverter is running (output greater than 0 W). The logging interval is permanently set at 30 minutes. Data can be recorded on the buffer memory for a three-hour time period as a result.

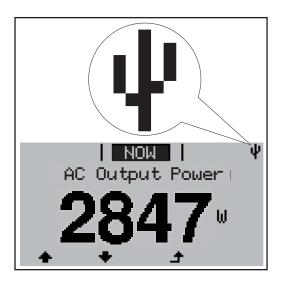
When the buffer memory is full, the oldest data in the memory will be overwritten by the next batch of data.

IMPORTANT! The buffer memory requires a permanent power supply.

If there is a power failure while the inverter is in operation, all the data in the buffer memory will be lost. To avoid losing data during the night, the automatic night switch-off facility must be deactivated (switch the 'Night Mode' setup parameter to ON - see the section 'Setting and displaying the menu items', 'Viewing and adjusting parameters in the DATCOM menu item').

Suitable USB sticks

Due to the variety of USB sticks available on the market, it cannot be guaranteed that every USB stick will be detected by the inverter.


Fronius recommends that only certified, industry-grade USB sticks are used (look out for the USB-IF logo).

The inverter supports USB sticks with the following file systems:

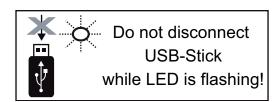
- FAT12
- FAT16
- FAT32

Fronius recommends that the USB sticks employed should only be used for recording logging data or updating the inverter software. The USB sticks should not contain any other data.

USB symbol on the inverter display, e.g. in display mode 'NOW':

If the inverter detects a USB stick, the USB symbol will appear in the top right corner of the display.

When inserting a USB stick, check whether the USB symbol is displayed (it may also flash).



NOTE! Please note for outdoor applications that conventional USB sticks are often only guaranteed to work within a restricted temperature range. For outdoor applications ensure that the USB stick also functions, for example, at low temperatures.

USB stick for updating the inverter software With the help of the USB stick, end customers can also update the inverter software via the USB item on the SETUP menu: the update file is first saved to the USB stick, from where it is then transferred to the inverter. The update file must be saved in the root directory on the USB stick.

Remove USB stick

Security note concerning the removal of a USB stick:

IMPORTANT! To avoid any loss of data, a USB stick may only be removed if the following conditions are met:

- only remove a USB stick via the 'Safely remove USB / HW' item on the SETUP menu
- the 'Data transmission' LED has stopped flashing or comes on steady.

Notes regarding maintenance

Maintenance

NOTE! When installed outdoors in a horizontal position: once a year, check that all screw joints are tight!

Cleaning

Clean the inverter and the display as required with a damp cloth. Do not use cleaning agents, abrasives or solvents to clean the inverter.

Fronius Worldwide - www.fronius.com/addresses

Fronius International GmbH 4600 Wels, Froniusplatz 1, Austria E-Mail: pv-sales@fronius.com http://www.fronius.com Fronius USA LLC Solar Electronics Division 6797 Fronius Drive, Portage, IN 46368 E-Mail: pv-us@fronius.com http://www.fronius-usa.com

Under http://www.fronius.com/addresses you will find all addresses of our sales branches and partner firms!